#ifndef IS_OOLITE #define IS_OOLITE 0 #endif #if IS_OOLITE #define SPECULAR_LIGHT (gl_LightSource[1].specular.rgb) #define DIFFUSE_LIGHT (gl_LightSource[1].diffuse.rgb) #define AMBIENT_LIGHT (gl_LightModel.ambient.rgb) #else #define OO_REDUCED_COMPLEXITY 0 #define SPECULAR_LIGHT vec3(0.8) #define DIFFUSE_LIGHT vec3(0.8) #define AMBIENT_LIGHT vec3(0.2) #define OOSTD_ILLUMINATION_MAP 1 #define OOSTD_NORMAL_MAP 1 #define OOSTD_SPECULAR_MAP 1 #endif #ifndef OO_REDUCED_COMPLEXITY #define OO_REDUCED_COMPLEXITY 0 #endif #ifndef OOSTD_ILLUMINATION_MAP #define OOSTD_ILLUMINATION_MAP 0 #endif #ifndef OOSTD_DIFFUSE_AND_ILLUMINATION_MAP #define OOSTD_DIFFUSE_AND_ILLUMINATION_MAP 0 #endif #ifndef OOSTD_NORMAL_MAP #define OOSTD_NORMAL_MAP 0 #endif #ifndef OOSTD_SPECULAR_MAP #define OOSTD_SPECULAR_MAP 0 #endif #ifndef OOSTD_NORMAL_AND_SPECULAR_MAP #define OOSTD_NORMAL_AND_SPECULAR_MAP 0 #endif #ifndef OOSTD_HARSH_MISTRESS #define OOSTD_HARSH_MISTRESS 0 #endif // Illumination map parameters. #define USE_ILLUMINATION OOSTD_ILLUMINATION_MAP || OOSTD_DIFFUSE_AND_ILLUMINATION_MAP #if OOSTD_ILLUMINATION_MAP uniform sampler2D uIlluminationMap; #define ILLUMINATION_COLOR texture2D(uIlluminationMap, texCoords).rgb #elif OOSTD_DIFFUSE_AND_ILLUMINATION_MAP #define ILLUMINATION_COLOR (diffuseMapSample.a * vec3(0.8, 0.8, 0.4)) #endif // Specular map parameters. // Separate OOSTD_SPECULAR_MAP is for testing in OpenGL Shader Builder, which doesn’t deal with alpha channels sensibly. #define USE_SPECULAR OOSTD_SPECULAR_MAP || OOSTD_NORMAL_AND_SPECULAR_MAP #if (OOSTD_SPECULAR_MAP) uniform sampler2D uSpecularMap; #define SPECULAR_FACTOR (texture2D(uSpecularMap, texCoords).r) #elif OOSTD_NORMAL_AND_SPECULAR_MAP #define SPECULAR_FACTOR (normalMapSample.a) #endif // Normal map parameters. #define USE_NORMAL_MAP OOSTD_NORMAL_MAP || OOSTD_NORMAL_AND_SPECULAR_MAP #if USE_NORMAL_MAP uniform sampler2D uNormalMap; #endif /* "Harsh shadow factor": degree to which normal map affects global diffuse light with terminator and full shadow, as opposed to "local light" which is a normal Lambertian light. Terminator threshold: defines the width and colour of the terminator. The numbers are cosines of the angle where it transitions to full light. Both of these factors are ignored in simple shader mode. */ #if OOSTD_HARSH_MISTRESS const float kHarshShadowFactor = 0.3; const vec3 kTerminatorThreshold = vec3(0.08); #else const float kHarshShadowFactor = 0.05; const vec3 kTerminatorThreshold = vec3(0.1, 0.105, 0.12); #endif // Texture coordinate calcuation. #if OO_REDUCED_COMPLEXITY #define TEXTURE_COORDS vTexCoords #else #define TEXTURE_COORDS vec2(TexLongitude(coords.x, coords.z), vTexCoords.t) #endif uniform sampler2D uDiffuseMap; // No vNormal, because normal is always 0,0,1 in tangent space. varying vec3 vEyeVector; varying vec2 vTexCoords; varying vec3 vLight1Vector; varying vec3 vCoords; vec3 CalcDiffuseIntensity(in vec3 lightVector, in vec3 normal) { float LdotN = lightVector.z; #if USE_NORMAL_MAP float globalTerm = dot(normalize(mix(vec3(0.0, 0.0, 1.0), normal, kHarshShadowFactor)), lightVector); #else float globalTerm = LdotN; #endif #if OO_REDUCED_COMPLEXITY // Hardish terminator. float rev = min(1.0 - globalTerm, 1.0); rev *= rev; vec3 baseLight = vec3(1.0 - (rev * rev)); #else // Hard terminator with slight redish-orange tinge. Note: threshold values are cosines. vec3 baseLight = smoothstep(vec3(0.0), kTerminatorThreshold, vec3(globalTerm)); #endif #if USE_NORMAL_MAP // Modulate with normal-mapped "local" illumination. float local = dot(lightVector, normal); local -= LdotN; baseLight *= local + 1.0; #endif return baseLight; } vec3 CalcSpecularLight(in vec3 lightVector, in vec3 eyeVector, in float exponent, in vec3 normal, in vec3 lightColor) { #if USE_NORMAL_MAP vec3 reflection = -reflect(lightVector, normal); float NdotE = dot(normal, eyeVector); #else /* reflect(I, N) is defined as I - 2 * dot(N, I) * N If N is (0,0,1), this becomes (I.x,I.y,-I.z). Note that we want it negated as per above. */ vec3 reflection = vec3(-lightVector.x, -lightVector.y, lightVector.z); float NdotE = eyeVector.z; #endif float RdotE = max(dot(reflection, eyeVector), 0.0); float intensity = pow(max(RdotE, 0.0), exponent); // Approximate Fresnel term. float kRefract = 1.0/1.33; // Index of refraction of water. float F0 = ((kRefract - 1.0) * (kRefract - 1.0)) / ((kRefract + 1.0) * (kRefract + 1.0)); float Fa = F0 + pow((1.0 - NdotE), 4.0) * (1.0 - F0); intensity *= 0.4 + Fa; return lightColor * intensity; } #if !OO_REDUCED_COMPLEXITY /* Approximation of atan(y/z) with quadrant rectification, scaled to -0.5..0.5 instead of -pi..pi. It is assumed that the values are in range. You are not expected to understand this. */ float TexLongitude(float z, float y) { const float k2Pi = 6.283185307179586; const float kMagic = 0.2732395447351; // (4 - pi) / pi float ratio = z / y; float r1 = 1.0 / ((ratio + kMagic / ratio) * k2Pi); // Result when abs(y) >= abs(x). float r2 = 0.25 * sign(ratio) - ratio / ((1.0 + kMagic * ratio * ratio) * k2Pi); // Result when abs(y) <= abs(x). float result = (abs(ratio) > 1.0) ? r1 : r2; // Adjust for sector. // Equivalent to (z < 0.0) ? ((y > 0.0) ? 0.75 : -0.25) : 0.25. // Well, technically not equivalent for z < 0, y = 0, but you'll very rarely see that exact case. return result + step(z, 0.0) * sign(y) * 0.5 + 0.25; } #endif void main() { vec3 totalColor = vec3(0); vec3 coords = normalize(vCoords); vec2 texCoords = TEXTURE_COORDS; /* Fun sphere facts: the normalized coordinates of a point on a sphere at the origin is equal to the object-space normal of the surface at that point. Furthermore, we can construct the binormal (a vector pointing westward along the surface) as the cross product of the normal with the Y axis. (This produces singularities at the pole, but there have to be singularities according to the Hairy Ball Theorem.) The tangent (a vector north along the surface) is then the inverse of the cross product of the normal and binormal. */ #if USE_NORMAL_MAP vec4 normalMapSample = texture2D(uNormalMap, texCoords); vec3 normal = normalize(normalMapSample.xyz - vec3(0.5)); #else vec3 normal = vec3(0, 0, 1); #endif // Diffuse light vec3 light1Vector = normalize(vLight1Vector); vec3 diffuseIntensity = CalcDiffuseIntensity(light1Vector, normal); vec3 diffuseLight = diffuseIntensity * DIFFUSE_LIGHT; vec4 diffuseMapSample = texture2D(uDiffuseMap, texCoords); vec3 diffuseColor = diffuseMapSample.rgb; totalColor += diffuseColor * diffuseLight; // Ambient light, biased towards blue. vec3 ambientColor = diffuseColor; #if !OO_REDUCED_COMPLEXITY && !OOSTD_HARSH_MISTRESS ambientColor *= vec3(0.8, 0.8, 1.0); #endif totalColor += AMBIENT_LIGHT * ambientColor; // Specular light. #if USE_SPECULAR float specularFactor = SPECULAR_FACTOR; vec3 specularLight = CalcSpecularLight(light1Vector, normalize(vEyeVector), 30.0 * specularFactor, normal, SPECULAR_LIGHT); totalColor += specularLight * 0.6 * specularFactor; #endif #if USE_ILLUMINATION vec3 illuminationColor = ILLUMINATION_COLOR; totalColor += (1.0 - diffuseIntensity.r) * illuminationColor; #endif gl_FragColor = vec4(totalColor, 1.0); }